70 research outputs found

    Model-Guided Data-Driven Optimization and Control for Internal Combustion Engine Systems

    Get PDF
    The incorporation of electronic components into modern Internal Combustion, IC, engine systems have facilitated the reduction of fuel consumption and emission from IC engine operations. As more mechanical functions are being replaced by electric or electronic devices, the IC engine systems are becoming more complex in structure. Sophisticated control strategies are called in to help the engine systems meet the drivability demands and to comply with the emission regulations. Different model-based or data-driven algorithms have been applied to the optimization and control of IC engine systems. For the conventional model-based algorithms, the accuracy of the applied system models has a crucial impact on the quality of the feedback system performance. With computable analytic solutions and a good estimation of the real physical processes, the model-based control embedded systems are able to achieve good transient performances. However, the analytic solutions of some nonlinear models are difficult to obtain. Even if the solutions are available, because of the presence of unavoidable modeling uncertainties, the model-based controllers are designed conservatively

    Ultrafast 3-D Super Resolution Ultrasound using Row-Column Array specific Coherence-based Beamforming and Rolling Acoustic Sub-aperture Processing: In Vitro, In Vivo and Clinical Study

    Full text link
    The row-column addressed array is an emerging probe for ultrafast 3-D ultrasound imaging. It achieves this with far fewer independent electronic channels and a wider field of view than traditional 2-D matrix arrays, of the same channel count, making it a good candidate for clinical translation. However, the image quality of row-column arrays is generally poor, particularly when investigating tissue. Ultrasound localisation microscopy allows for the production of super-resolution images even when the initial image resolution is not high. Unfortunately, the row-column probe can suffer from imaging artefacts that can degrade the quality of super-resolution images as `secondary' lobes from bright microbubbles can be mistaken as microbubble events, particularly when operated using plane wave imaging. These false events move through the image in a physiologically realistic way so can be challenging to remove via tracking, leading to the production of 'false vessels'. Here, a new type of rolling window image reconstruction procedure was developed, which integrated a row-column array-specific coherence-based beamforming technique with acoustic sub-aperture processing for the purposes of reducing `secondary' lobe artefacts, noise and increasing the effective frame rate. Using an {\it{in vitro}} cross tube, it was found that the procedure reduced the percentage of `false' locations from ∼\sim26\% to ∼\sim15\% compared to traditional orthogonal plane wave compounding. Additionally, it was found that the noise could be reduced by ∼\sim7 dB and that the effective frame rate could be increased to over 4000 fps. Subsequently, {\it{in vivo}} ultrasound localisation microscopy was used to produce images non-invasively of a rabbit kidney and a human thyroid

    Ion Doping Effects on the Lattice Distortion and Interlayer Mismatch of Aurivillius-Type Bismuth Titanate Compounds

    Get PDF
    Taking Bismuth Titanate (Bi4Ti3O12) as a Aurivillius-type compound with m = 3 for example, the ion (W6+/Cr3+) doping effect on the lattice distortion and interlayer mismatch of Bi4Ti3O12 structure were investigated by stress analysis, based on an elastic model. Since oxygen-octahedron rotates in the ab-plane, and inclines away from the c-axis, a lattice model for describing the status change of oxygen-octahedron was built according to the substituting mechanism of W6+/Cr3+ for Ti4+, which was used to investigate the variation of orthorhombic distortion degree (a/b) of Bi4Ti3O12 with the doping content. The analysis shows that the incorporation of W6+/Cr3+ into Bi4Ti3O12 tends to relieve the distortion of pseudo-perovskite layer, which also helps it to become more stiff. Since the bismuth-oxide layer expands while the pseudo-perovskite layer tightens, an analytic model for the plane stress distribution in the crystal lattice of Bi4Ti3O12 was developed from the constitutive relationship of alternating layer structure. The calculations reveal that the structural mismatch of Bi4Ti3O12 is constrained in the ab-plane of a unit cell, since both the interlayer mismatch degree and the total strain energy vary with the doping content in a similar trend to the lattice parameters of ab-plane

    Research on Index System for Disabled Elders Evaluation and Grey Clustering Model Based on End-point Mixed Possibility Functions

    Get PDF
    The file attached to this record is the Publisher's final version.An operational ability assessment system for older adults is of great help to address health and social challenges for ageing. In this paper, the main problems in currently available ADL and ability evaluation systems have been analyzed. The basic principles to build an index system for disability elders evaluation have been put forwarded. Then,an improved Barthel index system for ADL evaluation and a new older adults ability evaluation system consisted of 4 first-level indexes and 14 secondary indexes based on experts’ opinion and the ability assessment system for older adults by Ministry of Civil Affairs of China have been built. The grey clustering model based on end-point mixed triangular possibility function has been introduced. And three living examples of adults’ disability evaluation have been conducted. It is confirmed clearly that the three older adults belong to different categories of "severe disability", "mild disability", and "ability passable" respectively. The research results can be used as reference for government to formulate the elderly-care policies, to run and allocate the elderly-care resources, as well as reference for various nursing or elderly-care institutions

    Geographic Variation Did Not Affect the Predictive Power of Salivary Microbiota for Caries in Children With Mixed Dentition

    Get PDF
    Dental caries is one of the most prevalent chronic oral diseases, affecting approximately half of children worldwide. The microbial composition of dental caries may depend on age, oral health, diet, and geography, yet the effect of geography on these microbiomes is largely underexplored. Here, we profiled and compared saliva microbiota from 130 individuals aged 6 to 8 years old, representing both healthy children (H group) and children with caries-affected (C group) from two geographical regions of China: a northern city (Qingdao group) and a southern city (Guangzhou group). First, the saliva microbiota exhibited profound differences in diversity and composition between the C and H groups. The caries microbiota featured a lower alpha diversity and more variable community structure than the healthy microbiota. Furthermore, the relative abundance of several genera (e.g., Lactobacillus, Gemella, Cryptobacterium and Mitsuokella) was significantly higher in the C group than in the H group (p<0.05). Next, geography dominated over disease status in shaping salivary microbiota, and a wide array of salivary bacteria was highly predictive of the individuals’ city of origin. Finally, we built a universal diagnostic model based on 14 bacterial species, which can diagnose caries with 87% (AUC=86.00%) and 85% (AUC=91.02%) accuracy within each city and 83% accuracy across cities (AUC=92.17%). Although the detection rate of Streptococcus mutans in populations is not very high, it could be regarded as a single biomarker to diagnose caries with decent accuracy. These findings demonstrated that despite the large effect size of geography, a universal model based on salivary microbiota has the potential to diagnose caries across the Chinese child population

    Development of a Microfluidic Device for Single Cell Specific Membrane Capacitance Quantification

    No full text
    The specific membrane capacitance (SMC) of biological cell membranes correlates with cells’ electrical activity and morphology, which are physiological markers for cellular phenotype and health. Conventionally, SMC measurements are conducted using electro-rotation and Patch-clamping, which entail long time training and stringent operation skills. Both techniques also suffer from limited throughput and lengthy measurement time. In this study, a microfluidic device, which enables impedance spectroscopy measurements, was developed to quantify the SMC of single biological cells. The device has a testing speed of approximately one cell per minute and is relatively easy to operate. Three-dimensional finite element simulations of the microfluidic device confirm the feasibility of this approach. SMC measurement of two AML (Acute Myeloid Leukemia) subtypes and two UCC (Urothelium Cell Carcinoma) subtypes were conducted. Measured SMC results were found to lie in the comparable range with previously reported publications.MAS

    Characterization of microRNAs expression profiles in human dental-derived pluripotent stem cells.

    No full text
    Induced pluripotent stem cells (iPSCs) technology provides a powerful means to generate and regenerate unlimited pluripotent stem cells directly from body tissue cells. Stem cells from apical papilla (SCAP) and Dental pulp stem cells (DPSCs) are present in 'cell-rich zones' within the dental pulp region, which are capable of regenerating pulp and dentin tissues in vivo. In this study, we investigated the difference of miRNAs expression in SCAPs and DPSCs before and after the reprogramming. Using miRNA microarray, 134 and 265 differentially expressed miRNAs in DPSCs- and SCAP-iPSCs were up-regulated compared to these before reprogramming. 117 specific miRNAs with enhanced more than 2-fold were identified in both DPSCs- and SCAP-iPSCs. Among the co-regulated miRNAs, miR-19a-3p, miR-92b-3p and miR-130b-3p showed the maximum difference, which had involvement in the cell cycle, TGF beta signaling pathway and epithelial mesenchymal transition. Using qRT-PCR analysis, the expression of miR-19a-3p, miR-92b-3p and miR-130b-3p indicated substantial increases in DPSCs-iPSCs and SCAP-iPSCs. The findings suggest that miRNAs play a part in the difference between DPSCs-iPSCs and DPSCs, as well as between SCAP-iPSCs and SCAP. The variation of miRNA expression in reprogrammed dental-derived pluripotent stem cells revealed different characteristics induced by iPSC generation
    • …
    corecore